

General Aviation Airports

Airfield Marking Challenges

105 Georgia General Aviation Airports

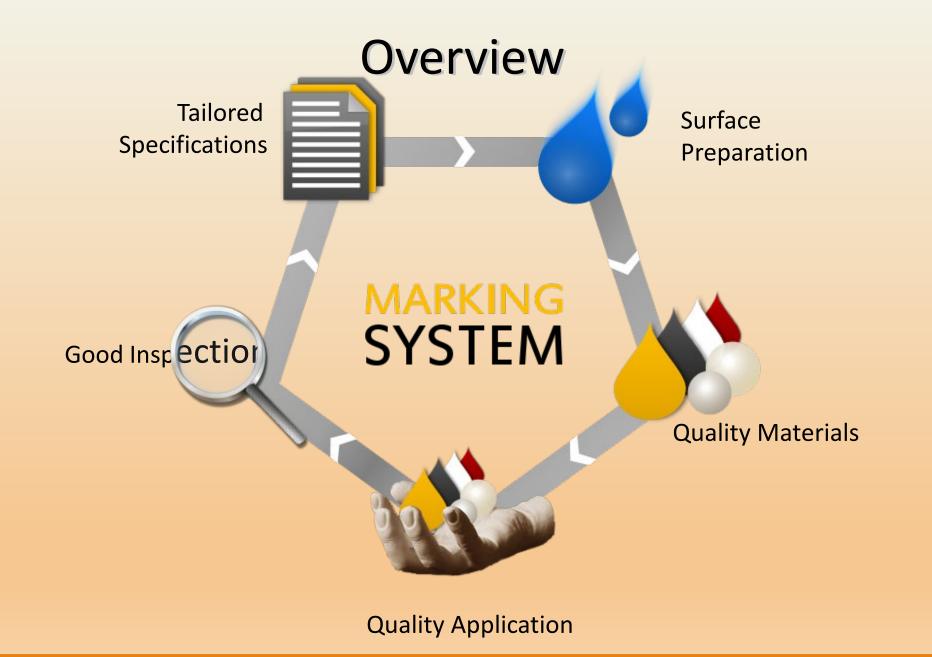
Introduction

- → Challenges for GA Airports
- What makes a marking "work"
 Surface Preparation
 Glass beads
 - Calibration of paint and beads
- ✤ Evaluation of marking performance
- → Temporary Markings

An IPRF Research Report Innovative Pavement Research Foundation Airport Concrete Pavement Technology Program

REPORT IPRF 01-G-002-05-1

AIRFIELD MARKING



Program Management Office 5420 Old Orchard Road Skokie, IL 60077

September 2008

Airfield Marking Handbook IPRF 01-G-002-05-1 Published September 2008 Revised February 2019

Defines BEST PRACTICES

Challenges for GA Airports

- → General Aviation airports have unique challenges
 - ✓ Markings are the primary visual aid
 - ✓ Too much or too little maintenance
 - ✓ Selecting materials tailored for the airport
 - ✓ Surface preparation is often neglected

Marking Maintenance – What makes them "work"?

→ What are the main criteria for markings?

- ✓ Visibility
- ✓ Durability
- ✓ Compliance

VISIBILITY

- ✓ Markings don't wear on smaller airports
- ✓ Weather (UV, rain, snow) degrades markings
- ✓ Contaminants discolor the markings
- ✓ Striping contractors may not be trained
- ✓ Inspectors may not be trained

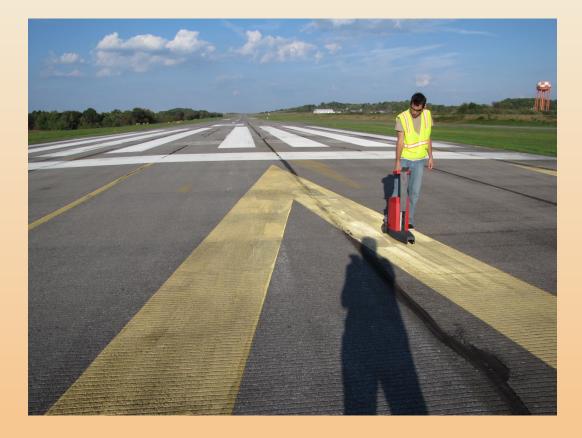
DURABILITY

- ✓ How long do the markings last?
- ✓ Do the markings result in cracking of the asphalt?
- ✓ Is new paint applied over old paint?
- ✓ Are markings applied well?
- ✓ Are reflectivity readings taken?

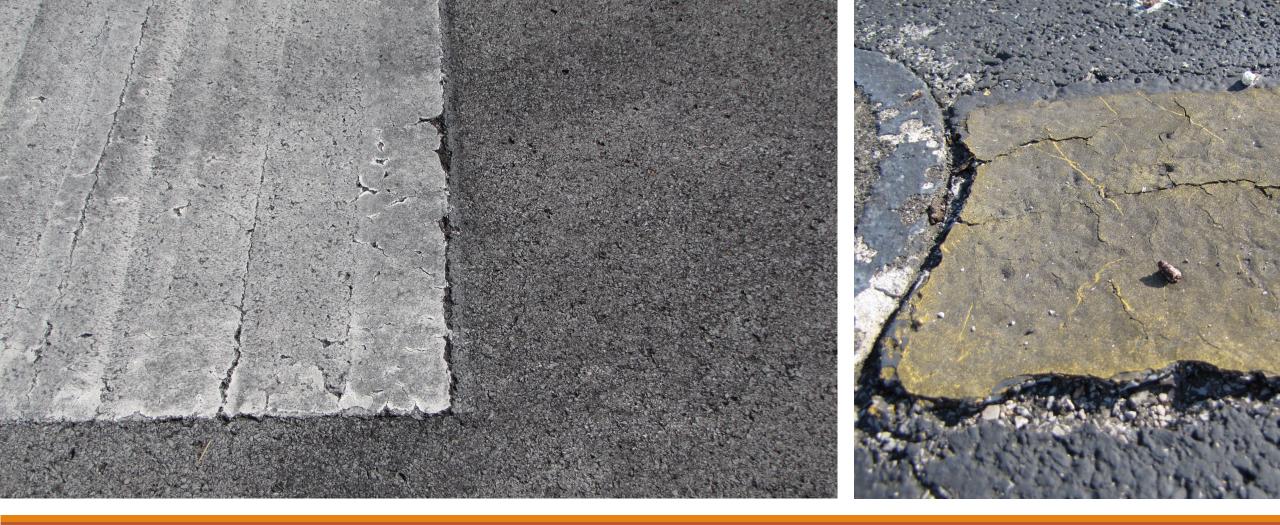
COMPLIANCE

- ✓ FAA AC 150/5340-1
- ✓ Adherence to regulations improves standardization
- ✓ FAA funding may increase compliance requirements
- ✓ Are markings inspected before maintenance?

INSPECTION BEFORE MAINTENANCE


- ✓ Check for marking contamination
- Evaluate existing reflectivity and color (visibility)
- Evaluate condition of pavement under the paint
- Verify marking placement, alignment and dimension
- Determine if maintenance is needed and what type; develop a scope of work

Marking Contamination


Reflectivity and Color (Visibility)

Glass beads

Condition of pavement <u>under</u> the paint

Placement

Alignment

Dimension

Develop the Scope of Work

- ✓ Square Feet of Surface Preparation
- ✓ Square Feet of cleaning in lieu of painting
- ✓ Quantity of white, yellow and black (red)
- ✓ Type of glass beads to be used
- ✓ Type of paint coating to be used

Surface Preparation

Definition:

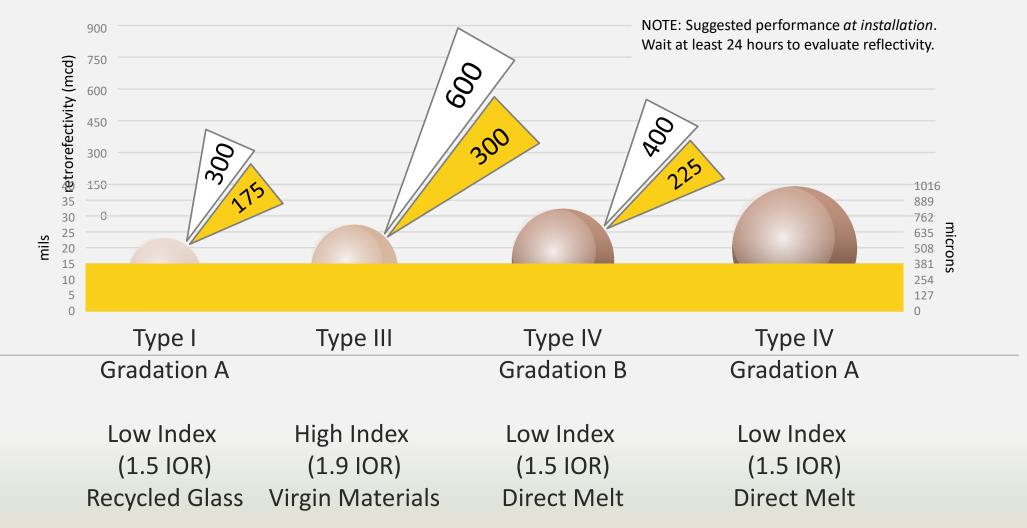
Surface preparation is the cleaning of *anything* that would prevent the bond of the new coating to either the pavement or existing coatings.

Surface Preparation Poor Surface Preparation!

Loose and poorly bonded material was removed by waterblasting.

No surface preparation has taken place

Pavement Marking Rejuvenation



Glass Beads

Minimum Retro-reflectance Values

Material	Retro-reflectance mcd/m ² /lux		
	White	Yellow	Red
Initial Type I	300	175	35
Initial Type III	600	300	35
Initial Thermoplastic	225	100	35
All materials, remark when less than ¹	100	75	10

1 Prior to remarking, determine if removal of contaminants on markings will restore retroreflectance.

AC 150/5370-10H - P620 Runway and Taxiway Markings

620-3.8 – Retro-Reflectance

Reflectance <u>shall be</u> measured . . . The average shall be equal to or above the minimum levels of all readings which are within 30% of each other.

This is intended to ensure more even distribution of glass beads so that there is a uniform appearance during darkness.

AC 150/5370-10H - P620 Runway and Taxiway Markings

620-3.2 – Equipment

The mechanical marker shall be an atomizing spraytype or airless marking machine with automatic glass bead dispensers suitable for application of traffic paint. It shall produce an even and uniform film thickness and appearance of both paint and glass beads at the required coverage and shall apply markings of uniform cross-sections and clear-cut edges without running or spattering and without over spray. The marking equipment for both paint and beads shall be calibrated daily.

AIRPORT GLASS BEAD CALIBRATION GUIDE

DROP RATE FOR 15 MIL (380 MICRON) WET FILM BEAD VOLUME IN MILLILITERS PER 10 SECONDS FOR A 6" (15 CM) WIDE LINE BEAD VOLUMES MUST BE DOUBLED WHEN APPLYING A 12" (30 CM) LINE USING ONE DISPENSER

TTB-1325D, TYPE I BEAD CALIBRATION CHART

	5#/GAL	7#/GAL	8#/GAL	10#/GAL
7 MPH	700	980	1120	1400
6 MPH	600	840	960	1200
5 MPH	500	700	800	1000
4 MPH	400	560	640	800
3 MPH	300	420	480	600
2 MPH	200	280	320	400
1 MPH	100	140	160	200

TTB-1325D, TYPE III BEAD CALIBRATION CHART

	7#/GAL	8#/GAL	10#/GAL	12#/GAL
7 MPH	560	630	805	980
6 MPH	480	540	690	840
5 MPH	400	450	575	700
4 MPH	320	360	460	560
3 MPH	240	270	345	420
2 MPH	160	180	230	280
1 MPH	80	90	115	140

8

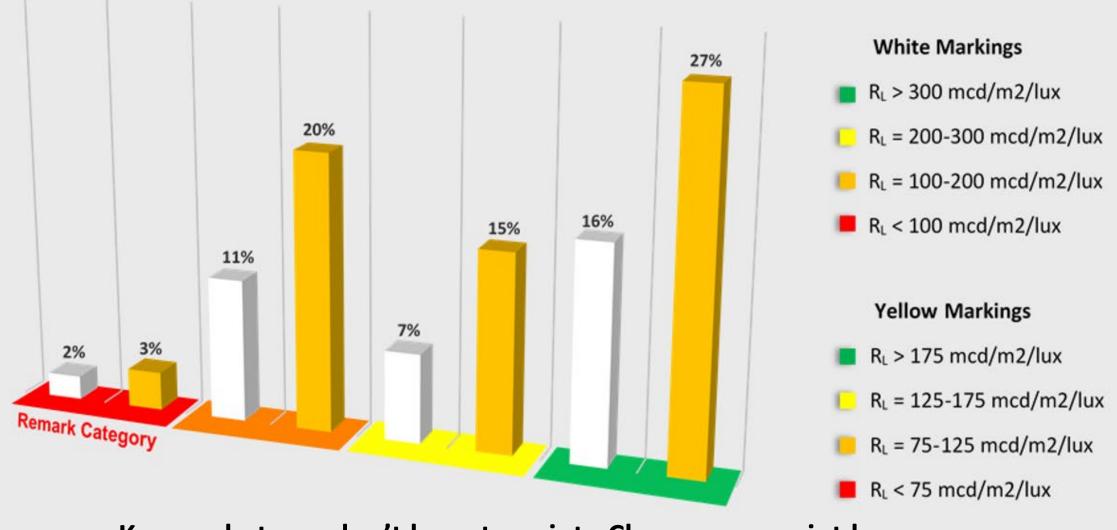
Morke the andrew is abspect and the prioring in a off rolice the base weeks for bear guilt the participant.

2. Then per the news gue \$7.5 seconds.

d) United the collection of action date appropriate hance light (i.e. b). the first of straining an observed at the date and united is of required based sugged.

4. We find consider accurate as these years that other values, increases the values is greater phase if a solution other, increases the forces that

Property 200 march 200 march 200 march 200 march 100 march 200 mar

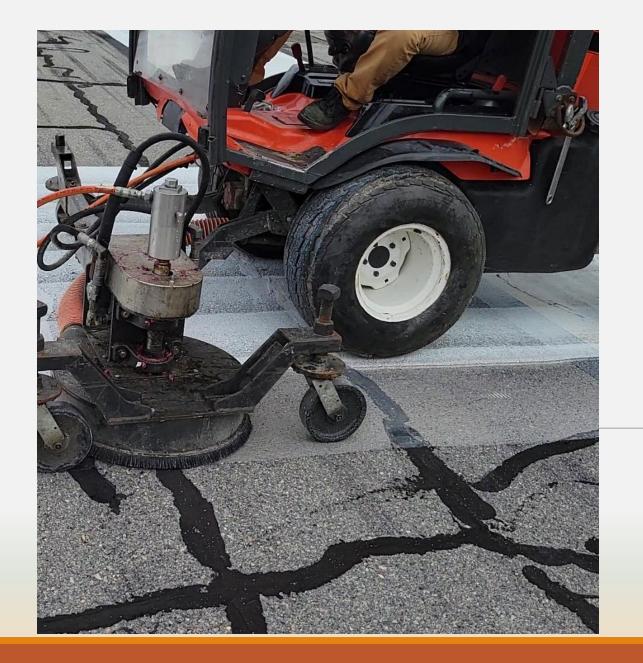

Check the control strip during darkness to ensure uniform appearance of both paint and glass beads.

Retro Assessments

1.11

Contraction of the Party

Airfield Marking Retro-reflectance Data



Know what you <u>don't</u> have to paint. Clean more, paint less.

AIRPORT COOPERATIVE RESEARCH PROGRAM PROJECT 09-19

Airfield Pavement Markings Effective Techniques for Removal and TEMPORARY APPLICATIONS

No scarring No damage to crack seal Minimal damage to existing markings

Before and After

SUMMARY

- Challenges for GA Airports addressed
- Attention to Visibility, Durability and Compliance
- Prepare all surfaces before/in lieu of repainting
- Use materials tailored for airport needs
- Calibrate equipment and monitor material usage
- Evaluate what you have to determine what you need
- Advocate FAA evaluation of temporary paint

QUESTIONS?

